Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2732: 67-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060118

RESUMEN

In nature, mycorrhizal association with soil-borne fungi is indispensable for orchid species. Compatible mycorrhizal fungi form endo-mycorrhizal structures in orchid cells, and the fungal structures are digested in orchid cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until nonphotosynthetic young seedlings develop leaves and become photoautotrophic. Seeds of all orchids germinate with the help of their own fungal partners, and therefore, specific partnership has been acquired in a long evolutionary history between orchids and fungi. Assuming that horizontal transmission of viruses may occur in such a close relationship, we are focusing on viruses that infect orchids and their mycorrhizal fungi. We prepared aseptically germinated orchid plants (i.e., fungi-free plants) together with pure-cultured fungal isolates and conducted transcriptome analyses (RNA-seq) by next-generation sequencing (NGS) approach. To reconstruct virus-related sequences that would have been present in the RNA sample of interest, de novo assembly process is required using short read sequences obtained from RNA-seq. In the previous version of our protocol (see Viral Metagenomics, first edition 2018), virus searches were conducted using contig sets constructed by a single assembler, but this time we devised a method to construct more reliable contigs using multiple assemblers and again reinvestigated that viruses could be detected. Because the virus detection efficiency and number of detected virus species clearly differed depending on the assembly pipeline and the number of the input data, multiple methods should be used to identify viral infection, if possible.


Asunto(s)
Micorrizas , Orchidaceae , Virus , Micorrizas/genética , Simbiosis/genética , Filogenia , Orchidaceae/genética , Orchidaceae/microbiología , Virus/genética
2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139361

RESUMEN

In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting remains ambiguous. Here, we tried to recreate tuber secondary growth using in vitro stemmed microtubers (MTs) (with the nodal stem attached) and MT halves (with the nodal stem entirely removed). Our experiments showed that GA alone could initiate the sprouting of stemmed microtubers; however, GA failed to initiate MT halves unless 6-benzyladenine, a synthetic cytokinin CK, was co-applied. Here, we analyzed the transcriptional profiles of sprouting buds using these in vitro MTs. RNA-seq analysis revealed a downregulation of cytokinin-activated signaling but an upregulation of the "Zeatin biosynthesis" pathway, as shown by increased expression of CYP735A, CISZOG, and UGT85A1 in sprouting buds; additionally, the upregulation of genes, such as IAA15, IAA22, and SAUR50, associated with auxin-activated signaling and one abscisic acid (ABA) negative regulator, PLY4, plays a vital role during sprouting growth. Our findings indicate that the role of the nodal stem is synonymous with CK in sprouting growth, suggesting that CK signaling and homeostasis are critical to supporting GA-induced sprouting. To effectively control tuber sprouting, more effort is required to be devoted to these critical genes.


Asunto(s)
Citocininas , Solanum tuberosum , Citocininas/metabolismo , Solanum tuberosum/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Perfilación de la Expresión Génica , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Tubérculos de la Planta/metabolismo
3.
PLoS One ; 18(6): e0286804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37279244

RESUMEN

The family Orchidaceae comprises the most species of any monocotyledonous family and has interesting characteristics such as seed germination induced by mycorrhizal fungi and flower morphology that co-adapted with pollinators. In orchid species, genomes have been decoded for only a few horticultural species, and there is little genetic information available. Generally, for species lacking sequenced genomes, gene sequences are predicted by de novo assembly of transcriptome data. Here, we devised a de novo assembly pipeline for transcriptome data from the wild orchid Cypripedium (lady slipper orchid) in Japan by mixing multiple data sets and integrating assemblies to create a more complete and less redundant contig set. Among the assemblies generated by combining various assemblers, Trinity and IDBA-Tran yielded good assembly with higher mapping rates and percentages of BLAST hit contigs and complete BUSCO. Using this contig set as a reference, we analyzed differential gene expression between protocorms grown aseptically or with mycorrhizal fungi to detect gene expressions required for mycorrhizal interaction. A pipeline proposed in this study can construct a highly reliable contig set with little redundancy even when multiple transcriptome data are mixed, and can provide a reference that is adaptable to DEG analysis and other downstream analysis in RNA-seq.


Asunto(s)
Orchidaceae , Transcriptoma , Humanos , Orchidaceae/genética , RNA-Seq , Genoma , Japón , Perfilación de la Expresión Génica
4.
Plant Pathol J ; 38(4): 383-394, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35953058

RESUMEN

In Japan, the P1 protein (S-type) encoded by leek yellow stripe virus (LYSV) isolates detected in Honshu and southward is shorter than the P1 (N-type) of LYSV isolates from garlic grown in Hokkaido due to a large deletion in the N-terminal half. In garlic fields in Hokkaido, two types of LYSV isolate with N- and S-type P1s are sometimes found in mixed infections. In this study, we confirmed that N- and S-type P1 sequences were present in the same plant and that they belong to different evolutionary phylogenetic groups. To investigate how LYSV with S-type P1 (LYSV-S) could have invaded LYSV with N-type P1 (LYSV-N)-infected garlic, we examined wild Allium spp. plants in Hokkaido and found that LYSV was almost undetectable. On the other hand, in Honshu, LYSV-S was detected at a high frequency in Allium spp. other than garlic, suggesting that the LYSV-S can infect a wider host range of Allium spp. compared to LYSV-N. Because P1 proteins of potyviruses have been reported to promote RNA silencing suppressor (RSS) activity of HC-Pro proteins, we analyzed whether the same was true for P1 of LYSV. In onion, contrary to expectation, the P1 protein itself had RSS activity. Moreover, the RSS activity of S-type P1 was considerably stronger than that of N-type P1, suggesting that LYSV P1 may be able to enhance its RSS activity when the deletion is in the N-terminal half and that acquiring S-type P1 may have enabled LYSV to expand its host range.

5.
J Exp Bot ; 73(14): 4908-4922, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35552692

RESUMEN

Fructans such as inulin and levan accumulate in certain taxonomic groups of plants and are a reserve carbohydrate alternative to starch. Onion (Allium cepa L.) is a typical plant species that accumulates fructans, and it synthesizes inulin-type and inulin neoseries-type fructans in the bulb. Although genes for fructan biosynthesis in onion have been identified so far, no genes for fructan degradation had been found. In this study, phylogenetic analysis predicted that we isolated a putative vacuolar invertase gene (AcpVI1), but our functional analyses demonstrated that it encoded a fructan 1-exohydrolase (1-FEH) instead. Assessments of recombinant proteins and purified native protein showed that the protein had 1-FEH activity, hydrolyzing the ß-(2,1)-fructosyl linkage in inulin-type fructans. Interestingly, AcpVI1 had an amino acid sequence close to those of vacuolar invertases and fructosyltransferases, unlike all other FEHs previously found in plants. We showed that AcpVI1 was localized in the vacuole, as are onion fructosyltransferases Ac1-SST and Ac6G-FFT. These results indicate that fructan-synthesizing and -degrading enzymes are both localized in the vacuole. In contrast to previously reported FEHs, our data suggest that onion 1-FEH evolved from a vacuolar invertase and not from a cell wall invertase. This demonstrates that classic phylogenetic analysis on its own is insufficient to discriminate between invertases and FEHs, highlighting the importance of functional markers in the nearby active site residues.


Asunto(s)
Cebollas , beta-Fructofuranosidasa , Fructanos/metabolismo , Glicósido Hidrolasas/metabolismo , Inulina , Cebollas/genética , Cebollas/metabolismo , Filogenia , Vacuolas/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
6.
Sci Rep ; 12(1): 7855, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551196

RESUMEN

Orchid seeds depend on colonization by orchid mycorrhizal (OM) fungi for their germination; therefore, the orchids and OM fungi have long maintained a close relationship (e.g., formation of the hyphal mass structure, peloton) during their evolution. In the present study, we isolated new partitiviruses from OM fungi; partitivirus were separately found in different subcultures from the same fungi. Partitiviruses have been believed to lack an RNA silencing suppressor (RSS), which is generally associated with viral pathogenicity, because most partitiviruses isolated so far are latent in both plants and fungi. However, we found that the coat protein (CP) of our partitiviruses indeed had RSS activity, which differed among the virus isolates from OM fungi; one CP showed RSS activity in both plants and fungi, while another CP showed no activity. The family Partitiviridae include viruses isolated from plants and fungi, and it has been suggested that these viruses may occasionally be transmitted between plant and fungal hosts. Given that there are several reports showing that viruses can adapt to nonhost using strong RSS, we here discussed the idea that partitiviruses may be better able to migrate between the orchid and fungus probably through the pelotons formed in the orchid cells, if host RNA silencing is suppressed by partitivirus RSS.


Asunto(s)
Micorrizas , Orchidaceae , Virus ARN , Hongos , Micorrizas/genética , Orchidaceae/microbiología , Filogenia , Plantas , Interferencia de ARN , Virus ARN/genética , Simbiosis
7.
PLoS Pathog ; 18(1): e1010267, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081172

RESUMEN

The 2b protein (2b) of cucumber mosaic virus (CMV), an RNA-silencing suppressor (RSS), is a major pathogenicity determinant of CMV. 2b is localized in the nucleus and cytoplasm, and its nuclear import is determined by two nuclear localization signals (NLSs); a carrier protein (importin [IMPα]) is predicted to be involved in 2b's nuclear transport. Cytoplasmic 2bs play a role in suppression of RNA silencing by binding to small RNAs and AGO proteins. A putative nuclear export signal (NES) motif was also found in 2b, but has not been proved to function. Here, we identified a leucine-rich motif in 2b's C-terminal half as an NES. We then showed that NES-deficient 2b accumulated abundantly in the nucleus and lost its RSS activity, suggesting that 2b exported from the nucleus can play a role as an RSS. Although two serine residues (S40 and S42) were previously found to be phosphorylated, we also found that an additional phosphorylation site (S28) alone can affect 2b's nuclear localization and RSS activity. Alanine substitution at S28 impaired the IMPα-mediated nuclear/nucleolar localization of 2b, and RSS activity was even stronger compared to wild-type 2b. In a subcellular fractionation assay, phosphorylated 2bs were detected in the nucleus, and comparison of the accumulation levels of nuclear phospho-2b between wild-type 2b and the NES mutant showed a greatly reduced level of the phosphorylated NES mutant in the nucleus, suggesting that 2bs are dephosphorylated in the nucleus and may be translocated to the cytoplasm in a nonphosphorylated form. These results suggest that 2b manipulates its nucleocytoplasmic transport as if it tracks down its targets, small RNAs and AGOs, in the RNA silencing pathway. We infer that 2b's efficient RSS activity is maintained by a balance of phosphorylation and dephosphorylation, which are coupled to importin/exportin-mediated shuttling between the nucleus and cytoplasm.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Cucumovirus/fisiología , Inmunidad de la Planta/fisiología , Interferencia de ARN/fisiología , Proteínas Virales/metabolismo , Carioferinas/metabolismo
8.
BMC Plant Biol ; 19(1): 24, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642254

RESUMEN

BACKGROUND: De novo DNA methylation triggered by short interfering RNAs is called RNA-directed DNA methylation (RdDM). Transcriptional gene silencing (TGS) through RdDM can be induced using a viral vector. We have previously induced RdDM on the 35S promoter in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c using the cucumber mosaic virus vector. The GFP fluorescence phenotype segregated into two types, "red" and "orange" in the first self-fertilized (S1) progeny plants by the difference in degree of recovery from TGS on GFP expression. In the second self-fertilized generation (S2 plants), the phenotypes again segregated. Explaining what generates the red and orange types could answer a very important question in epigenetics: How is the robustness of TGS maintained after RdDM induction? RESULTS: In bisulfite sequencing analyses, we found a significant difference in the overall promoter hypermethylation pattern between the red and orange types in S1 plants but little difference in S2 plants. Therefore, we assumed that methylation at some specific cytosine residues might be important in determining the two phenotypes. To find the factor that discriminates stable, robust TGS from the unstable TGS with incomplete inheritance, we analyzed the direct effect of methylated cytosine residues on TGS. Because it has not yet been demonstrated that DNA methylation at a few specific cytosine residues on known sequence elements can indeed determine TGS robustness, we newly developed a method by which we can directly evaluate the effect of specific methylation on promoter activity. In this assay, we found that the effects of the specific cytosine methylation on TGS differed between the plus- and minus-strands. CONCLUSIONS: We found two distinct phenotypes, the stable and unstable TGS in the progenies of virus-induced TGS plants. Our bisulfite sequencing analyses suggested that methylation at some specific cytosine residues in the 35S promoter played a role in determining whether stable or unstable TGSs are induced. Using the developed method, we inferred that DNA methylation heterogeneity in and between the plus- and minus-strands can differentially determine TGS.


Asunto(s)
Metilación de ADN/genética , Nicotiana/genética , Regiones Promotoras Genéticas/genética , Transgenes/genética , Silenciador del Gen/fisiología
9.
Plant Sci ; 278: 107-112, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30471723

RESUMEN

To confirm availability of Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI) for visualizing distribution of soluble carbohydrates in apple (Malus domestica) fruits a horizontal fruit flesh specimen was cut from a matured 'Fuji' fruit, mounted on a glass slide, lyophilized and then ion intensities of individual soluble carbohydrates were probed around the specimen using a MALDI-TOF MSI apparatus automatically. Contents of soluble carbohydrates in adjacent tissue of the same fruit were also determined using HPLC to compare the distribution of individual carbohydrate based on the ion intensities from MALDI-TOF MSI with those from HPLC. Positive correlation (P < 0.001, R2 > 0.95) was confirmed between the concentration of each standard carbohydrate and the relative ion intensity of MALDI-TOF mass spectrometry (MS), and thus it seems possible to use the ion intensity of MALDI-TOF MS for determining the relative concentration of carbohydrates in a sample. Singly charged ions attached with a potassium ion only were detected from the apple fruit specimen when DHB was used as a matrix for MALDI-TOF MSI. Graded increase of sucrose content from center to cortex side of the fruit flesh was confirmed by both MALDI-TOF MSI and HPLC. When pseudo color images on the distribution of individual carbohydrates based on the results from MALDI-TOF MSI were compared with the content of carbohydrates in the adjacent 16 tissue blocks quantified using HPLC, strong (P < 0.001, R2 = 0.6222) and weak (P < 0.10, R2 = 0.2123) correlation was confirmed between the brightness and the content of sucrose and sorbitol, respectively. These facts indicate that distribution of sucrose and sorbitol in apple fruit tissue can be visualized using MALDI-TOF MSI. Thus, MALDI-TOF MSI will be useful for examining carbohydrate metabolism during the maturing of apple fruit.


Asunto(s)
Carbohidratos/análisis , Malus/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cromatografía Líquida de Alta Presión , Frutas/metabolismo , Sorbitol/análisis , Sorbitol/metabolismo , Sacarosa/análisis , Sacarosa/metabolismo
10.
Methods Mol Biol ; 1746: 161-172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29492893

RESUMEN

In nature, mycorrhizal association with soilborne fungi is indispensable for orchid families. Fungal structures from compatible endo-mycorrhizal fungi in orchid cells are digested in cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until shoots develop (leaves) and become photoautotrophic. Seeds of all orchid species surely geminate with the help of their own fungal partners, and this specific partnership has been acquired for a long evolutional history between orchids and fungi.We have studied the interactions between orchids and mycorrhizal fungi and recently conducted transcriptome analyses (RNAseq) by a next-generation sequencing (NGS) approach. It is possible that orchid RNA isolated form naturally grown plants is contaminated with RNAs derived from mycorrhizal fungi in the orchid cells. To avoid such contamination, we here prepared aseptically germinated orchid plants (i.e., fungus-free plants) together with a pure-cultured fungal isolate and field-growing orchid samples. In the cDNA library prepared from orchid and fungal tissues, we found that partitivirus-like sequences were common in an orchid and its mycorrhizal fungus. These partitivirus-like sequences were closely related by a phylogenetic analysis, suggesting that transmission of an ancestor virus between the two organisms occurred through the specific relation of the orchid and its associated fungus.


Asunto(s)
ADN Viral/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica , Micorrizas/genética , Micorrizas/virología , Orchidaceae/microbiología , ADN Viral/genética , Filogenia
11.
Arch Virol ; 163(6): 1419-1427, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29417240

RESUMEN

Allexiviruses are economically important garlic viruses that are involved in garlic mosaic diseases. In this study, we characterized the allexivirus cysteine-rich protein (CRP) gene located just downstream of the coat protein (CP) gene in the viral genome. We determined the nucleotide sequences of the CP and CRP genes from numerous allexivirus isolates and performed a phylogenetic analysis. According to the resulting phylogenetic tree, we found that allexiviruses were clearly divided into two major groups (group I and group II) based on the sequences of the CP and CRP genes. In addition, the allexiviruses in group II had distinct sequences just before the CRP gene, while group I isolates did not. The inserted sequence between the CP and CRP genes was partially complementary to garlic 18S rRNA. Using a potato virus X vector, we showed that the CRPs affected viral accumulation and symptom induction in Nicotiana benthamiana, suggesting that the allexivirus CRP is a pathogenicity determinant. We assume that the inserted sequences before the CRP gene may have been generated during viral evolution to alter the termination-reinitiation mechanism for coupled translation of CP and CRP.


Asunto(s)
Proteínas de la Cápside/genética , Flexiviridae/genética , Ajo/virología , Regulación Viral de la Expresión Génica , Filogenia , Factores de Virulencia/genética , Emparejamiento Base , Secuencia de Bases , Evolución Biológica , Proteínas de la Cápside/metabolismo , Flexiviridae/clasificación , Flexiviridae/aislamiento & purificación , Flexiviridae/patogenicidad , Ajo/genética , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Genoma Viral , Interacciones Huésped-Patógeno , Mutagénesis Insercional , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Potexvirus/genética , Potexvirus/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Nicotiana/genética , Nicotiana/virología , Factores de Virulencia/metabolismo
12.
Biosci Biotechnol Biochem ; 81(10): 1855-1860, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28764588

RESUMEN

Most Brassicaceae vegetables are ideal dietary sources of antioxidants beneficial for human health. Cardamine fauriei (Ezo-wasabi in Japanese) is a wild, edible Brassicaceae herb native to Hokkaido, Japan. To clarify the main antioxidative phytochemical, an 80% methanol extraction from the leaves was fractionated with Diaion® HP-20, Sephadex® LH-20, and Sep-Pak® C18 cartridges, and the fraction with strong antioxidant activity depending on DPPH method was purified by HPLC. Based on the analyses using HRESIMS and MS/MS, the compound might be N1, N14-diferuloylspermine. This rare phenol compound was chemically synthesized, whose data on HPLC, MS and 1H NMR were compared with those of naturally derived compound from C. fauriei. All results indicated they were the same compound. The radical-scavenging properties of diferuloylspermine were evaluated by ORAC and ESR spin trapping methods, with the diferuloylspermine showing high scavenging activities of the ROO·, O2·-, and HO· radicals as was those of conventional antioxidants.


Asunto(s)
Antioxidantes/farmacología , Cardamine/química , Ácidos Cumáricos/farmacología , Hojas de la Planta/química , Espermina/análogos & derivados , Espermina/farmacología , Antioxidantes/química , Ácidos Cumáricos/química , Espermina/química
13.
Plant Cell Rep ; 36(1): 37-47, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27659495

RESUMEN

KEY MESSAGE: Cucumber mosaic virus (CMV) can induce a specific necrosis on Arabidopsis through the interaction between the CMV 2b protein and host catalase, in which the ubiquitin-proteasome pathway may be involved. We previously reported that the CMV 2b protein, the viral RNA silencing suppressor, interacted with the H2O2 scavenger catalase (CAT3), leading to necrosis on CMV-inoculated Arabidopsis leaves. We here confirmed that CMV could more abundantly accumulate in the CAT3-knockout mutant (cat3), and that CAT3 makes host plants a little more tolerant to CMV. We also found that the necrosis severity is not simply explained by a high level of H2O2 given by the lack of CAT3, because the recombinant CMV, CMV-N, induced much milder necrosis in cat3 than in the wild type, suggesting some specific mechanism for the necrosis induction. To further characterize the 2b-inducing necrosis in relation to its binding to CAT3, we conducted the agroinfiltration experiments to overexpress CAT3 and 2b in N. benthamiana leaves. The accumulation levels of CAT3 were higher when co-expressed with the CMV-N 2b (N2b) than with CMV-Y 2b (Y2b). We infer that N2b made a more stable complex with CAT3 than Y2b did, and the longevity of the 2b-CAT3 complex seemed to be important to induce necrosis. By immunoprecipitation (IP) with an anti-ubiquitin antibody followed by the detection with anti-CAT3 antibodies, we detected a higher molecular-weight smear and several breakdown products of CAT3 among the IP-proteins. In addition, the proteasome inhibitor MG132 treatment could actually increase the accumulation levels of CAT3. This study suggests that the host proteasome pathway is, at least partially, responsible for the degradation of CAT3, which is manifested in CMV-infected tissues.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virología , Catalasa/metabolismo , Cucumovirus/fisiología , Enfermedades de las Plantas/virología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Virales/metabolismo , Técnicas de Inactivación de Genes , Mutación/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Proteolisis , Ubiquitina/metabolismo
14.
Plant J ; 89(2): 325-337, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696560

RESUMEN

Because structural modifications of flavonoids are closely related to their properties, such as stability, solubility, flavor and coloration, characterizing the enzymes that catalyze the modification reactions can be useful for engineering agriculturally beneficial traits of flavonoids. In this work, we examined the enzymes involved in the modification pathway of highly glycosylated and acylated anthocyanins that accumulate in Lobelia erinus. Cultivar Aqua Blue (AB) of L. erinus is blue-flowered and accumulates delphinidin 3-O-p-coumaroylrutinoside-5-O-malonylglucoside-3'5'-O-dihydroxycinnamoylglucoside (lobelinins) in its petals. Cultivar Aqua Lavender (AL) is mauve-flowered, and LC-MS analyses showed that AL accumulated delphinidin 3-O-glucoside (Dp3G), which was not further modified toward lobelinins. A crude protein assay showed that modification processes of lobelinin were carried out in a specific order, and there was no difference between AB and AL in modification reactions after rhamnosylation of Dp3G, indicating that the lack of highly modified anthocyanins in AL resulted from a single mutation of rhamnosyltransferase catalyzing the rhamnosylation of Dp3G. We cloned rhamnosyltransferase genes (RTs) from AB and confirmed their UDP-rhamnose-dependent rhamnosyltransferase activities on Dp3G using recombinant proteins. In contrast, the RT gene in AL had a 5-bp nucleotide deletion, resulting in a truncated polypeptide without the plant secondary product glycosyltransferase box. In a complementation test, AL that was transformed with the RT gene from AB produced blue flowers. These results suggest that rhamnosylation is an essential process for lobelinin synthesis, and thus the expression of RT has a great impact on the flower color and is necessary for the blue color of Lobelia flowers.


Asunto(s)
Antocianinas/metabolismo , Lobelia/fisiología , Proteínas de Plantas/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Clonación Molecular , Prueba de Complementación Genética , Glucósidos/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Lobelia/genética , Lobelia/metabolismo , Filogenia , Pigmentación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Virus Res ; 212: 25-9, 2016 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-26116900

RESUMEN

Satellite RNAs (satRNAs) and viroids belong to the group called subviral agents and are the smallest pathogens of plants. In general, small satRNAs and viroids are 300-400 nt in size and do not encode any functional proteins; they are thus regarded as so-called long noncoding RNAs (lncRNAs). These lncRNAs are receiving great attention as a new RNA class involved in gene regulation to control important biological processes such as gene transcription and epigenetic regulation. A substantial number of lncRNAs in animal cells have been found to play important roles in the interactions between a virus and its host. We here discuss the pathogenicity of subviral RNAs (especially satRNAs) in plant cells and their functions as lncRNAs associated with viral diseases, using animal lncRNAs as an analogy. Because, unlike animal lncRNAs, plant subviral RNAs can replicate and accumulate at very high levels in infected cells, we here considered the unique possibility that the RNA silencing machinery of plants, an important defense mechanism against virus infection, may have brought about the replication ability of subviral molecules. In addition, we also discuss the possibility that satRNAs may have arisen from plant-virus interactions in virus-infected cells. Understanding the molecular functions of these unique lncRNAs in plants will enable us to reveal the most plausible origins of these subviral RNAs.


Asunto(s)
Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , ARN Largo no Codificante/metabolismo , Virosis/virología , Virus/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Plantas/virología , ARN Largo no Codificante/genética , Viroides/genética , Viroides/metabolismo , Virus/genética
16.
BMC Plant Biol ; 15: 93, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25884984

RESUMEN

BACKGROUND: Capsaicinoids, including capsaicin and its analogs, are responsible for the pungency of pepper (Capsicum species) fruits. Even though capsaicin is familiar and used daily by humans, the genes involved in the capsaicin biosynthesis pathway have not been well characterized. The putative aminotransferase (pAMT) and Pungent gene 1 (Pun1) proteins are believed to catalyze the second to last and the last steps in the pathway, respectively, making the Pun1 protein the putative capsaicin synthase. However, there is no direct evidence that Pun1 has capsaicin synthase activity. RESULTS: To verify that the Pun1 protein actually plays a role in capsaicin production, we generated anti-Pun1 antibodies against an Escherichia coli-synthesized Pun1 protein and used them to antagonize endogenous Pun1 activity. To confirm the anti-Pun1 antibodies' specificity, we targeted Pun1 mRNA using virus-induced gene silencing. In the Pun1-down-regulated placental tissues, the accumulated levels of the Pun1 protein, which was identified on a western blot using the anti-Pun1 antibodies, were reduced, and simultaneously, capsaicin accumulations were reduced in the same tissues. In the de novo capsaicin synthesis in vitro cell-free assay, which uses protoplasts isolated from placental tissues, capsaicin synthesis was inhibited by the addition of anti-Pun1 antibodies. We next analyzed the expression profiles of pAMT and Pun1 in various pepper cultivars and found that high levels of capsaicin accumulation always accompanied high expression levels of both pAMT and Pun1, indicating that both genes are important for capsaicin synthesis. However, comparisons of the accumulated levels of vanillylamine (a precursor of capsaicin) and capsaicin between pungent and nonpungent cultivars revealed that vanillylamine levels in the pungent cultivars were very low, probably owing to its rapid conversion to capsaicin by Pun1 soon after synthesis, and that in nonpungent cultivars, vanillylamine accumulated to quite high levels owing to the lack of Pun1. CONCLUSIONS: Using a newly developed protoplast-based assay for de novo capsaicin synthesis and the anti-Pun1 antibodies, we successfully demonstrated that the Pun1 gene and its gene product are involved in capsaicin synthesis. The analysis of the vanillylamine accumulation relative to that of capsaicin indicated that Pun1 was the primary determinant of their accumulation levels.


Asunto(s)
Capsaicina/metabolismo , Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Capsicum/enzimología , Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo
17.
Methods Mol Biol ; 1236: 1-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25287491

RESUMEN

The protocol for a simple, sensitive, and specific method using a cDNA macroarray to detect multiple viruses is provided. The method can be used even at the production sites for crops, which need a reliable routine diagnosis for mixed infection of plant viruses. The method consists of three steps: RNA extraction, duplex RT-PCR, and "microtube hybridization" (MTH). Biotinylated cDNA probes are prepared using RT-PCR and used to hybridize a nylon membrane containing target viral cDNAs by MTH. Positive signals can be visualized by colorimetric reaction and judged by eyes. We here demonstrate this method to detect asparagus viruses (Asparagus virus 1 and Asparagus virus 2) from latently infected asparagus plants.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Enfermedades de las Plantas/virología , Virus de Plantas/aislamiento & purificación , Biotina/química , Coinfección , Colorimetría/métodos , Cartilla de ADN , Sondas de ADN/química , ADN Complementario/química , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Plásmidos , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
18.
Methods Mol Biol ; 1236: 171-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25287503

RESUMEN

Fungal viruses (mycoviruses) often have a significant impact not only on phenotypic expression of the host fungus but also on higher order biological interactions, e.g., conferring plant stress tolerance via an endophytic host fungus. Arbuscular mycorrhizal (AM) fungi in the phylum Glomeromycota associate with most land plants and supply mineral nutrients to the host plants. So far, little information about mycoviruses has been obtained in the fungi due to their obligate biotrophic nature. Here we provide a technical breakthrough, "two-step strategy" in combination with deep-sequencing, for virological study in AM fungi; dsRNA is first extracted and sequenced using material obtained from highly productive open pot culture, and then the presence of viruses is verified using pure material produced in the in vitro monoxenic culture. This approach enabled us to demonstrate the presence of several viruses for the first time from a glomeromycotan fungus.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Micorrizas/virología , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación , Micorrizas/crecimiento & desarrollo , Filogenia , ARN Bicatenario/aislamiento & purificación , Esporas Fúngicas/virología
19.
Phytopathology ; 104(9): 1001-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25116643

RESUMEN

Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus and thought to induce the asparagus decline syndrome. AV-2 is known to be transmitted by seed, and the possibility of pollen transmission was proposed 25 years ago but not verified. In AV-2 sequence analyses, we have unexpectedly found mixed infection by two distinct AV-2 isolates in two asparagus plants. Because mixed infections by two related viruses are normally prevented by cross protection, we suspected that pollen transmission of AV-2 is involved in mixed infection. Immunohistochemical analyses and in situ hybridization using AV-2-infected tobacco plants revealed that AV-2 was localized in the meristem and associated with pollen grains. To experimentally produce a mixed infection via pollen transmission, two Nicotiana benthamiana plants that were infected with each of two AV-2 isolates were crossed. Derived cleaved-amplified polymorphic sequence analysis identified each AV-2 isolate in the progeny seedlings, suggesting that pollen transmission could indeed result in a mixed infection, at least in N. benthamiana.


Asunto(s)
Asparagus/virología , Ilarvirus/fisiología , Enfermedades de las Plantas/virología , Polen/virología , Protección Cruzada , Flores/citología , Flores/virología , Interacciones Huésped-Patógeno , Ilarvirus/aislamiento & purificación , Inmunohistoquímica , Hibridación in Situ , Meristema/citología , Meristema/virología , Brotes de la Planta/citología , Brotes de la Planta/virología , Polen/citología , Polinización , Plantones/citología , Plantones/virología , Semillas/citología , Semillas/virología , Nicotiana/citología , Nicotiana/virología
20.
Arch Virol ; 159(8): 2157-60, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24532299

RESUMEN

Arbuscular mycorrhizal (AM) fungi that belong to the phylum Glomeromycota associate with most land plants and supply mineral nutrients to the host plants. One of the four viral segments found by deep-sequencing of dsRNA in the AM fungus Rhizophagus clarus strain RF1 showed similarity to mitoviruses and is characterized in this report. The genome segment is 2,895 nucleotides in length, and the largest ORF was predicted by applying either the mold mitochondrial or the universal genetic code. The ORF encodes a polypeptide of 820 amino acids with a molecular mass of 91.2 kDa and conserves the domain of the mitovirus RdRp superfamily. Accordingly, the dsRNA was designated as R. clarus mitovirus 1 strain RF1 (RcMV1-RF1). Mitoviruses are localized exclusively in mitochondria and thus generally employ the mold mitochondrial genetic code. The distinct codon usage of RcMV1-RF1, however, suggests that the virus is potentially able to replicate not only in mitochondria but also in the cytoplasm. RcMV1-RF1 RdRp showed the highest similarity to the putative RdRp of a mitovirus-like ssRNA found in another AM fungus, followed by RdRp of a mitovirus in an ascomycotan ectomycorrhizal fungus. The three mitoviruses found in the three mycorrhizal fungi formed a deeply branching clade that is distinct from the two major clades in the genus Mitovirus.


Asunto(s)
Glomeromycota/virología , Micorrizas/virología , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Secuencia de Aminoácidos , Secuencia de Bases , Genoma Viral , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Virus ARN/química , Virus ARN/genética , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...